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COMPUTER ANALYSIS OF STRUCTURES

SYNOPSIS

A method based on the principle of transformation is presented, which
unifies flexibility and stiffness methods,

Programs for the analysis of plane rectangular frames and plane frames
in general, with bars of constant and variable section, are discussed and
exemplified.

Structural analysis of normal and special types of suspension bridges,
based on separate study of cable and beam, is also presented and
exemplified. Results are compared with those obtained by model tests.

Reference is made to the computer used and to some special features of
the programs. '

1 - INTRODUCTION

The method of structural analysis based on the notion of transformation,
besides being quite general, makes possible a very useful unification of
concepts, This method can be expressed in a particularly simple form in a
matrix language being consequently suitable for computers,

The method consists in transforming a structure, the behaviour of which
is unknown, into another of known behaviour by changing its internal or
external connections. Two main types of transformations are considered:
cuts and fixations.

In the case of structures made up of bars, forces and moments at each
cross section of a bar have six components. The transformation can deal in
separate with each of these components or with the correspondent
displacements. Thus 12 different elementary transformations can be
introduced in the cross section of a bar: 6 corresponding to cuts, each of
them making one of the force or moment components to vanish, and 6
corresponding to fixations each making a displacement component to vanish.
Obviously other types of transformations could be considered among which
e. g. elastic restraints. The preceding transformation types can be extended
without difficulty to structures of other types (1).

When the transformation of the structure consists exclusively in the
application of cuts, the method is usually called flexibility method; if in the
introduction of fixations, stiffiness method. The duality of these methods has
been remarked and employed with success (see e. g, Argyris (2)). It is
noteworthy that both types of transformations can be simultaneously applied
a general method being consequently obtained, the transformation method.

.



This method consists, first, in transforming the structure whose
behaviour is unknown into another of known behaviour, forces or displacements
being then applied at the points affected by the transformation so as to
reconstitute the original structure. This implies to know the behaviour of the
transformed structure under both the action of the system of forces or
displacements acting on the transformation points (cuts or fixations). The
latter behaviour can be expressed by means of a matrix, the elements of
which represent the effects of unit transformations, This matrix is called
the transformation matrix, T.

The effect, at the transformation points, of forces applied at the
transformed structure can be expressed by means of a vector, Tg. The
components of this vector will be displacements, if the transformation
consists in cuts, and forces if the transformation consists in fixations.

The forces and displacements, X, required to reconstitute the original
structure have to comply with the condition TX = - T,;, where from X = -
T-1 T,. If the values of X are thus determined, the behaviour of the
original structure becomes known.

Let us analyse, more in detail, the matrix T. This matrix can be
represented in outline as indicated in fig, 1, Matrices F and § are those
usually considered in, respectively, the flexibility and the stiffness methods.
Two new matrices, C and E are now required, both depending on the
geometric and elastic features of the structure.

As shown below, other transformations are useful besides those required
to transform a statically indeterminate into a statically determinate structure.
The behaviour of structures with widely different shapes is at present
tabulated it being easy to resort to this knowledge. In the particular case of
framed structures it is possible, by means of the well-known method of joint
fixation, to obtain a system of fixed-end bars the behaviour of which can be
expressed by simple formulas,

The advantage of adopting flexibility or stiffness methods can be assessed
by means of the concepts of static and kinematic indeterminating (3). The
adoption of the referred general method can also be advisable in most cases,
Let us consider for instance the structure represented in fig. 2, a). By
means of the transformations shown in b), a structure can be obtained, the
analysis of which is simple. The adopted transformation consists in locking
two joints and releasing a hanger. Fig. 3 shows how a statically determined
structure can be studied by transformation into a statically indeterminate
structure, what is achieved by locking its joints, This can be useful if, for
instance the behaviour of the built-in arch is previously known.

2 - STUDY OF PLANE RECTANGULAR FRAMED STRUCTURES

The stiffness method is particularly suited to the study of plane
rectangular frames since, rotations of the joints and possible translations
normal to the axes of the bars being locked, the structure becomes a system
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of fixed-end bars, the behaviour of which is well-known. The number of
fixations is thus equal to the number of joints that can rotate plus the number
of possible translations.

The values of the bending moments and shearing forces at the fixed-end
bars, when a unit rotation is applied at each end or a unit translation at one
end with respect to the other, are shown in fig, 4. For a general bar, ij,
four parameters, Kij, Kji, K'ij and Lij suffice to define these moments and
the corresponding shearing forces.

The same figure shows how to determine these parameters for a bar
with a variable cross-section in function of its geometric and elastic
characteristics. In the particular case of a bar with a constant moment

4E I
of inertia, as Kij = E'ji =2 K"ij = 'L the problem grows simpler and the

behaviour of the bar can be defined by means exclusively of K'ij and L'ij'

In order to obtain the stiffness matrix 5, it is advisable to consider in
separate, three sub-matrixes A, B and C, fig, 5, and to analyse the law of
their formation. This is synthetically indicated in the same figure. Notice
that besides the correspondence between the indices defining the bar and the
constants K and L., it is necessary to establish an auxiliary correspondence
between the subscripts of the translations and the subscripts of the joints
directly affected by the translation, separating the joints placed above
(right) and below (left) the bars undergoing a given horizontal (vertical)
translation from those placed on the bars which undergo that translation
themselves.

In order to facilitate, as far as possible the indications to be supplied
by whoever requests the computation, it will suffice to indicate the geometric
characteristics of the structure, fixed-end moments, statically-determinate
reactions and concentrated forces acting in the direction of possible
translations, by filling out Table A of fig, 6, which concerns bars with a
constant cross-section. An additional Table B, in which the joints affected
by each translation are indicated, is filled out at the computing centre,

Feeding the indications contained in both tables into the computer, it
supplies matrix S and the vector 5, corresponding to the forces applied.

Rotations and translations are very easily determined by constructing
the product - §-1 S5,- DBending moments and shearing forces are
automatically obtained from the rotations and translations by means of
simple linear expressions,

Fig. 7 shows how the computer presents the results by indicating
successively the values of rotations, translations, bending moments and
shearing forces.



program was presented 'b},r Livesley (4), in which only external forces are
considered at the joints but in which the elastic stability is taken into account,

Notice that this program being more general than the one presented in 2,
the inversion of a higher rank matrix is required. In the computer available,
matrix inversion is directly possible only up to rank 62, what limits to 62
the number of fixations and consequently to 20 the number of joints,

4 - STUDY OF SUSPENSION BRIDGES

Classical suspension bridges with vertical hangers can be easily analysed
by the deformability method., By cutting the hangers, the structure is
transformed into two separate structures, a cable and a beam.

It is easy to obtain the expressions by means of which the displacements
of a cable acted upon by concentrated forces can be computed (5). The only
difficulty lies in the fact that these expressions are not linear i, e, the
displacements obtained from them are not proportional to the applied forces,
These expressions neve;theleas can be rendered linear by determining the
displaceménts due to a given unit force and assuming that the remaining
values are proportional to the displacements thus obtained.

The unit force should be so selected that the total increases of the thrust
obtained and the thrust due the forces to be considered are not very different.
Notice that if a constant force is adopted, the matrix obtained is asymmetric
as the reciprocal principle is not obeyed. Another possible method, would
be to change the value of the forces considered so as to obtain constant thrust
increases,

Terms taking into account the effect of the horizontal deformability of
the towers and the elastic elongation of the cables can be easily introduced
into the expressions giving the displacements of the cable.

Linear formulas can be easily deduced for determining the displacements
of the beam, whether this is continuous or not,

Expressions by means of which the displacements of a cable or of a
continuous beam with a constant moment of inertia and a central span three
times the lateral spans can be computed, are indicated in fig. 9 and 10,
These formulas can be easily calculated in the computer, yielding matrices
C and B, defining the flexibility of both types of members.

The concentrated forces on hangers, X, can be calculated by the expression:

{x} =- [B-c] ' x {8}

in which B  is a vector defining the flexibility of the beam for a given
position of the force.



From X, influence diagrams for bending moments are easily obtainable,

The preceding method was applied in the analytical design of a bridge
with a central span of 1,200 m, which had also been studied in model ( # ),
A comparison is presented in fig. 12 between two influence lines obtained
by analytical and experimental methods, The analytical solution was
obtained by inversion of a matrix of rank 35, The agreement between the
results should be remarked and it must be noted that the computed and
tested structures were not completely similar, If it were so a better
agreement would have been obtained,

In order to investigate up to what extent a variation in the number of
equations influences the accuracy of the results, a matrix of rank 17 was
also formed by alternately striking out rows and columns. The results
obtained by inversion of this matrix differed from the first by about 15
per cent, what shows the need, in structures of this type, to express.the
problem by means of a considerable number of equations.

Besides being extremely simple, this analytical design method for
suspension bridges, has the great advantage, in comparison with the
traditional method based on the integration of the differencial equation,
that it can be easily applied to suspension bridges other than those with
vertical hangers only, and also to bridges in which the cable is anchored
at the central point of the truss or where inclined cables are introduced.

In order to study, e, g. the effects of anchoring the cable at the
central point of the truss, it suffices to consider an additional cut by means
of which freedom of relative displacements is made possible at this point.
This amounts to considering another equation, the coefficients of which are
the horizontal relative displacements of the middle point of the cable and of
the truss under the action of unit forces applied at the hangers of the
transformed structure., The independent terms corresponding to this
equation are the horizontal displacements of the anchoring point when the
forces act on the truss only. The expressions by means of which these
displacements can be determined are easy to obtain.

A computation carried out assuming the cable to be anchored at the
truss, showed that the forces at the hangers changed by less than 5 per cent.

This method is also suitable for studying other special types of
suspension bridges such as that outlined in fig. 12 a). This type of bridge
has only an upper cable, the stiffness truss being replaced by two
prestressed cables. The hangers and other horizontal cables in the plane
of the prestressed ones form a space tetrahedral mesh (& %),

The behaviour of this bridge under the action of vertical forces can be
studied by means of cuts at the lower cables in each panel, The system is
thus transformed into a suspended cable, with oblique hangers forming
triangular meshes, fig, 12, b, Once the displacements at the lower ends
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of the hangers under the action of vertical and horizontal forces are
determined, what is easily done from the behaviour of the cable, there is no
difficulty in writing the equations which will solve the problem.

A study of the space behaviour of this structure under the action of
forces with any direction leads to a band matrix of very high rank (several
hundreds). The fact that, except for a few diagonals near the main
diagonal, all the elements of this matrix are zero, leads us to believe that
it will not be difficult to construct the inverse matrix. This problem is at
present being studied,

(#) These model tests were carried out by Prof, Edgar Cardoso, Professor
of Bridge Engineering at Institute Superior Tecnico, Lisbon,

(% #) A bridge of this type was suggested by Prof. Edgar Cardoso for
crossing the Tagus in Lisbon.

5 - CONCLUSIONS

Transformation method being a powerful tool of structural analysis and
having a simple matrix expression it is particularly suited for computers.

The analysis presented of frames and suspension bridges shows how
adequate this method is for a medium-sized computer,

The general use, by the designers, of powerful means of analytical and
experimental analysis available in specialized institutions, is a great help
for the progress of structural engineering,
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ROTe ¢ MILLIMETERS PER METER )
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